
Ideal Filters

One of the reasons why we design a filter is to  remove disturbances
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Conditions for Non-Distortion

Problem: ideally we do not want the filter to distort the signal we want to recover.
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just scaled and
delayed.
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Consequence on the Frequency Response:
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For real time  implementation we also want the filter to be causal, ie.
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FACT (Bad News!):  by the Paley-Wiener Theorem, if h(n) is causal and with finite energy,
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Characteristics of Non Ideal Digital Filters
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Two Classes of Digital Filters:

a) Finite Impulse Response  (FIR), non recursive, of the form
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With N  being the order of the filter.

Advantages:  always stable, the phase can be made exactly  linear, we can approximate any
filter we want;

Disadvantages: we need a lot of coefficients (N large) for good performance;

b) Infinite Impulse Response (IIR), recursive, of the form
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Advantages: very selective with a few coefficients;

Disadvantages: non necessarily stable, non linear phase.



Finite Impulse Response (FIR) Filters

Definition: a filter whose impulse response has finite duration.
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Problem: Given a desired Frequency Response                  of the filter, determine the impulse
response          .
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Recall: we relate the Frequency Response  and the Impulse Response by the DTFT:
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Example: Ideal Low Pass Filter
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Notice two facts:

• the filter is not causal, i.e. the impulse response h(n) is non zero for n<0;

• the impulse response has infinite duration.

This is not just a coincidence. In general the following can be shown:

If a filter is causal then

• the frequency response cannot be zero on an interval;

• magnitude and phase are not independent, i.e. they cannot be specified arbitrarily
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As a consequence:  an ideal filter cannot be causal.



Problem: we want to determine a causal Finite Impulse Response (FIR) approximation of the
ideal  filter.

We do this by

a) Windowing
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b)  Shifting in time, to make it causal:
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Effects of windowing and shifting on the frequency response of the filter:

a) Windowing: since                                            then)()()( nwnhnh dw = )(*)(
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For different windows we have different values of the transition region and the attenuation in the
stopband:
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Rectangular -13dB

Bartlett -27dB
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Effect of windowing and shifting on the frequency response:

b) shifting:  since                                          then)()( Lnhnh w −=
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The phase of FIR low pass filter:

passband; in the  )( LH ωω −=∠
Which shows that it is a Linear Phase Filter.
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Example of Design of an FIR filter using Windows:

Specs: Pass Band   0 - 4 kHz

  Stop Band     > 5kHz with attenuation of at least 40dB

Sampling Frequency   20kHz

Step 1: translate specifications into digital frequency
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Step 3: from desired attenuation choose the window. In this case we can choose the hamming
window;

Step 4: from the transition region choose the length N of the impulse response. Choose an odd
number N  such that:

  
8

10
π π
N

≤

So choose N=81 which yields the shift L=40.

Finally the impulse response of the filter
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The Frequency Response of the Filter:
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Example: design a digital filter which approximates a differentiator.

Specifications:

• Desired Frequency Response:
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• Sampling Frequency

• Attenuation in the stopband at least 50dB.
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Solution.

Step 1. Convert to digital frequency
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Step 2:  determine ideal impulse response
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From integration tables or integrating by parts we obtain 
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Step 3.  From the given attenuation we use the Blackman  window.  This window has a transition
region region of                      .  From the given transition region we solve for the complexity N as
follows
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which yields                  .  Choose it odd as, for example, N=121, ie. L=60.120≥N

Step 4.  Finally the result
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